Exploring Different Numerical Bases

The numeral system we use is base ten. We use ten digits: $0,1,2,3,4,5,6,7,8,9$, and the value of a digit depends on its position in a number. For example,

$$
2016=2 \cdot 10^{3}+0 \cdot 10^{2}+1 \cdot 10^{1}+6 \cdot 10^{0}
$$

Numbers can be written in any number base $n \geq 2$.
Base n uses digits $0,1,2, \ldots, \mathrm{n}-1$.

Decimal (Base ten)

10^{6}	10^{5}	10^{4}	10^{3}	10^{2}	10^{1}	10^{0}	Base with power
$1,000,000$	100,000	10,000	1,000	100	10	1	Place value
							Digits used 0-9

Binary (Base two)

2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}	Base with power
128	64	32	16	8	4	2	1	Place value
								Digits used 0-1

Ternary (Base three)

3^{5}	3^{4}	3^{3}	3^{2}	3^{1}	3^{0}	Base with power
243	81	27	9	3	1	Place value
						Digits used 0-2

To convert to another base from base ten:

Find the highest power of the base that fits into the given number (can fit more than once!)

- Subtract this power from the number as many times as it fits.
- Repeat with the new number.

Example: Convert 124_{10} to base three.
81 fits in once 124-81 $=43$
27 fits in once 43-27 $=16$
9 fits in once 16-9 = 7
3 fits in twice 7-2(3) $=1$
1 fits in once 1-1 = 0 Therefore, $11121_{3}=124$ in our numeral system

